
Enter the Hydra:
Toward Principled Bug Bounties and
Exploit-Resistant Smart Contracts
Summer School on Real-World Crypto and Privacy
Šibenik, Croatia, 14 June 2018

Florian Tramer
Stanford

Phil Daian,
Cornell Tech, Jacobs, IC3

Lorenz Breidenbach
Cornell Tech, ETH, IC3

Ari Juels

What’s a
Smart Contract?

Smart contracts

•Small programs that run on blockchains
•Given trust in underlying blockchain,
smart contracts are
• Transparent
• Irreversible
• Tamper-resistant

• ...plus they can act upon
crypto tokens = $money

Smart
Contract

Lots of recent interest in ETH…

> $48 billion$7 billion

<
$35 billion$22 billion $27 billion

Why? Suppose Alice and Bob want to trade..

Problem of Fair Exchange!

10 Bob’s
Bubble Tokens (BBT)

1 ETH

Bob’s Bubble Tokens (BBT)

1 ETH 10 BBT

1 ETH10 BBT

Trusted third-party (with public state)

Smart
contract

1 ETH10 BBT

Smart contract ≈
Trusted third-party (with public state)

1 ETH 10 BBT

No, not
Floyd Mayweather…

!

Crypto Tokens

•Application-specific
cryptocurrency
•Mainly ERC20 tokens
•Managed in Ethereum
smart contracts

•$38+ billion token
market cap

Crypto Tokens

•Sold in Initial Coin Offerings
(ICOs)
• a.k.a. Token Launch, Token
Generation Events (TGEs), etc.
• Like unregulated VC
• Token like a share (kind of…)

•Since mid-2017, ICO
funding outstripping early-
stage Internet VC (!)

Crypto Tokens: ERC721
• “Non-fungible tokens”: Represent unique objects

SMART CONTRACT CHALLENGES

1. Correctness: Contracts often have fatal
bugs!

2. Confidentiality: No private data.
3. Authenticated data: No good,

trustworthy access to real-world data!

Side effects of the token mania

•Token smart contracts
are compact
•Lots of money per
contract
•Astonishing value per
line of code
•Which makes for juicy
targets…

Token Lines of
Code

Value per
line

OmiseGo
(OMG)

396 ∼$2.4M

Tether
(USDT)

423 ∼$5.9M

EOS
(EOS)

584 ∼$15.8M

Sources: coinmarketcap.com, 14 June 2018., and published contract
source code

Some (in)famous smart contracts

•The DAO (June 2016)
• Reentrancy bug ⇒ $50+ million stolen

•Parity multisig hack (July 2017)
• Parity 1.5 client’s multisig wallet contract
• Bad use of delegatecall⇒ $30 million stolen

…from 3 ICO wallets (Edgeless Casino, Swarm City, and æternity)
•Parity multisig hack—Redux! (Nov. 2017)
• Bad use of delegatecall⇒ >$150 million frozen
• …much from ICO wallets (Polkadot, $98 million)

Why not try to address correctness with…

•Formal verification
•Absolutely!
•But limited scaling
•What if there’s a bug in the formal spec? (Turtles!)

•Static and dynamic verification
•Absolutely!
•But limited scope

N-Version programming
(Chen & Avizienis ’78, Knight-Leveson ‘86)

Program

N-Version programming
(Chen & Avizienis ’78, Knight-Leveson ‘86)

Version 1

Input X Version 2

Version 3

Majority
Vote

Agreed
output

N software versions / heads

If something goes wrong…

Version 1

Version 2

Version 3

Majority
Vote

Agreed
output

N software versions / heads

Input X

What is N-version programming doing?

A program transformation T takes N ≥ 1 programs and creates
new program f*:= T (f1, f2, . . . , fN).

f*
Version 1

Input X Version 2

Version 3

Majority
Vote

output Y

Some more definitions

•Let be an ideal program specification
•Conceptual! Doesn’t actually exist…

•Let f be an implemented program
•An exploit is an input X such that (X) ≠ f(X)
• Intuition: Any deviation from intended behavior is
a potentially serious bug
•Exploit set E(f,): set of exploits X for f and

Mind the gap

• Let D be a distribution over inputs X
•Definition of exploit gap:

• Affirmative gap (> 1) meansT reduces exploits
• Bigger gap⇒ fewer relative bugs in f*
• gap captures dependencies among heads

Exploits against f*

Exploits against
f1, f2, f3…

gap

Houston… we have a gap

Version 1

Version 2

Version 3

Majority
Vote

Agreed
output

N software versions / heads

Input X

f* f1

f2

f3

gap

N-version-programming criticism

• Strong gap requires independence
among heads
• Correlations hurt!

•Knight-Leveson (1986):
• “We reject the null hypothesis of full

independence at a p-level of 5%”
• Eckhardt et al. (1991):
• “We tried it at NASA and it wasn’t cost

effective”
• Worst case: 3 versions ⇒ 4x fewer errors

Version 1

Input X
Version 2

Version 3

Majority
Vote

Agreed
output

N software versions / heads

But not everything is a space shuttle…

•Not all software needs to be
available at all times!
• E.g., Smart contracts: How bad if

it’s down for a while?

• In fact, often better no answer
than the wrong one
• Bugs are often harmful

•N-of-N-Version Programming
(NNVP)

NNVP a.k.a. Hydra Framework

Version 1

Input X Version 2

Version 3 Fault
manager

Agreed
output

N software versions /
heads

Majority
vote

Idea: Strengthen majority vote of N-Version Programming

NNVP a.k.a. Hydra Framework

Unless all versions agree, abort!

Version 1

Input X Version 2

Version 3

=?
Fault
manager

Agreed
output

N software versions /
heads

NNVP a.k.a. Hydra
•Aborting in NNVP:

Correctness←Availability

• NASA numbers much better for
NNVP
• Some availability loss, but…
• gap = 4,409 for N = 3 heads
• gap = 34,546 for N = 4 heads
• Probably even better!

Head 2 Head 3

Head 1

Hydra creates a (strong) gap…

Program

Head 1

Input X Head 2

Head 3

=?
Fault
manager

Agreed
output

Serious bug in one head now rarely fatal…

✗

Smart contracts are Hydra-friendly!

Hydra could probably have addressed cases in green and yellow vulnerabilities

Application:
Bug Bounties

Bug bounties

•Reward for responsible
disclosure of software
vulnerabilities
•Key element of nearly all
security assurance
programs
•E.g., Apple (up to $200k)

Some problems with bug bounties:

1. Bounties often fail to incentivize disclosure
•Apple: ≤ $200k bounty
•Zerodium: $1.5 million for certain iPhone jailbreaks

2. Time lag between reporting and action
•Weaponization can happen after disclosure

3. Bounty administrator doesn’t doesn’t
always pay!

Some problems with bug bounties:

1. Bounties often fail to incentivize disclosure
•Apple: ≤ $200k bounty
•Zerodium: $1.5 million for certain iPhone jailbreaks

2. Time lag between reporting and action
•Weaponization can happen after disclosure

3. Bounty administrator doesn’t doesn’t
always pay!

The perfect bug bounty

1. High leverage: Small bounty incentivizes
disclosure for valuable program

2. Automatic payout: Bounty hunter need
not trust bounty administrator to pay
• Censorship-resistant, verifiable

3. Automatic remediation: Immediate
intervention in affected software

Bug bounties: The Rational Attacker’s Game

Program
Value: $A

Bug bounties: The Rational Attacker’s Game

Find
Exploit

DiscloseAttack

$A $0
No bounty

Bug bounties: The Rational Attacker’s Game

Find
Exploit

DiscloseAttack

0A
No bounty

Always attack!

Bug bounties: The Rational Attacker’s Game

Find
Exploit

Attack

$A

Disclose

$B
Classic bounty: $B

Bug bounties: The Rational Attacker’s Game

Find
Exploit

DiscloseAttack

BA
Classic bounty: $B

Disclose if
$B > $A!

Our goal: High leverage
Find

Exploit

Attack

$A /gap

Disclose

$B

Find
Exploit

DiscloseAttack

BA /gap
For gap ≫ 1

Our goal: High leverage

Our goal: High leverage
Find

Exploit

DiscloseAttack

BA/gap*
Exploit
gap

Disclose if
$B > $A / gap!

Wait a minute…

Program
Value: $A

Disclose, i.e.,
don’t attack
even though
$B < $A ?!

The Hydra Framework for Bug Bounties

Input X

Agreed
output Y

Head 1

Head 2

Head 3
=
?✓

The Hydra Framework for Bug Bounties

Input X

Head 1

Head 2

Head 3
=
?

Fault
manager

✗
Abort

Pay
$bounty

$bounty

The Hydra Hacker’s Dilemma

Head 1

Input X Head 2

Head 3

Claim bounty ($B) now?

$$$
Head 1

Input X Head 2

Head 3

Try to break all heads ($A)?

Recall:

gap

Hydra Framework → High leverage

•Suppose strong rational adversary discovers bugs as fast
as all honest bounty hunters combined
•Suppose:
•Contract worth $A
• Bounty $B

•Then (we prove) adversary discloses if:

$B > $A / (gap + 1).

Example

•Recall: NASA experiments imply:
•gap = 4,409 for N = 3 heads
•gap = 34,546 for N = 4 heads

•So…
•Approx $1 billion contract (e.g., OmiseGo)
•N = 4
•$30k $bounty incentivizes adversary to disclose!

The perfect bug bounty

1. High leverage: Small bounty incentivizes
disclosure for valuable program

2. Automatic payout: Bounty hunter need
not trust bounty administrator to pay
• Censorship-resistant, verifiable

3. Automatic remediation: Immediate
intervention in affected software

✓

It’s a smart contract! It’s automatically automatic!

Input X

Head 1

Head 2

Head 3
=
? ✗

Pay
$bounty

$bounty

f*

The perfect bug bounty

1. High leverage: Small bounty incentivizes
disclosure for valuable program

2. Automatic payout: Bounty hunter need
not trust bounty administrator to pay
• Censorship-resistant, verifiable

3. Automatic remediation: Immediate
intervention in affected software

✓✓

How to remediate if contract fails?

•The DAO ($50+ million stolen)
•Remedy: Fork returned money (in ETH-land) to victims

•Parity multisig hack ($30 million stolen)
• (Partial) Remedy: White hats “stole” $78 mil.; returned
money to victims
• (Two co-authors of Hydra paper among these hackers…)

•Parity multisig hack—Redux! ($150 million frozen)
• (Proposed) Remedy: Unfreeze funds and return to victims

The Hydra Framework for Bug Bounties

Head 1

Input X Head 2

Head 3

Fault
manager

=
?✗

f*

Abort +
Return
$$$

The perfect bug bounty

1. “Strong exploit gap”: Small bounty
incentivizes disclosure for valuable program

2. Automatic payout: Bounty hunter need
not trust bounty administrator to pay
• Censorship-resistant, verifiable

3. Automatic remediation: Immediate
intervention in affected software

✓
✓
✓

Smart contracts: Perfect bug-bounty targets

• Vulnerable:
• Bug-prone / hard to code correctly
• Many $$$ per line of code

• But promising:
• Hydra-friendly

• Support (1) High leverage; (2) Automated payout; and (3) Reasonable remediation
• Bonus: Automatic value-at-risk assessment
• First opportunity to reason about bounty amounts in principled way!

Implementation

•ERC20
•Standard token-management contract
•N = 3
•$bounty = 3ETH ~= $1500
•Deployed@ 0xf4ee935a3879ff07362514da69c64df80fa28622

•Generalized Monty-Hall game
•Extension of Monty Hall game to K out of M doors
• In progress

https://etherscan.io/address/0xf4ee935a3879ff07362514da69c64df80fa28622

Reveal

Commit

Submarine
Commitments

Bug withholding

•Suppose adversary A
discovers bug X
•A should disclose fast
to prevent honest user
claiming $bounty

Hydra
Contract

X

X’

$bounty

Adversary A

Bug withholding

•Unfortunately, blockchains
are messy…
•A can front-run honest user!
• So A can withhold X and keep
looking for full exploit of f*
• Ruins our whole bounty
analysis!
• No immediate incentive to disclose

compromise of individual heads!

Hydra
Contract

X

X’

$bounty

Adversary A

Solution?

• Idea 1: Must commit in
block t-1 to reveal claim
in block t
�Lots of cover traffic

•Problem: A commits in
every round and front-
runs reveal!

Hydra
Contract

X

C(X’’)

$bounty

C(X’)C(X’’’)

X’

Adversary A

Solution?

• Idea 2: Must commit $deposit
in block t-1 to reveal claim in
block t

Hydra
Contract

X
$bounty

$deposit
C(X’)

X’

Adversary A

Solution?

• Idea 2: Must commit
$deposit in block t-1 to
reveal claim in block t
• Problem: $deposit sent to
Hydra Contract is
publicly visible
• So A can front-run

commit!

Hydra
Contract

$deposit

In general, if A can observe honest users’ behavior,
she can front-run them!

Solution: Submarine Commitment

•Commit sends $deposit
to random address
• People send money to
fresh addresses all the
time!
• So Commit looks like
ordinary traffic…
• No visible association with
Hydra Contract

Hydra
Contract

Random-
looking
address R$deposit

Commit

Solution: Submarine Commitment

• But actually, R is specially
constructed
• Only HydraContract can

recover money from R, with key κ
• Reveal sends key κ
• Key κ allows fund recovery by
HydraContract
• Thus we can:
• Commit $deposit stealthily and
• Prevent front-running!

Hydra
ContractReveal

κ

κ
$deposit

Random-
looking
address R

Submarine Commitments

•Security analysis a bit
involved:
•New, strong adversarial
model introduced for
blockchains

Submarine Commitments

•Security analysis a bit
involved:
•New, strong adversarial
model introduced for
blockchains

•Standard cryptographic
modeling of adversaries…
but with money

Submarine Commitments

•We prove tight bounds on adversary’s front-
running ability
•E.g., to protect $100,000 bounty with reasonable
parameters in Ethereum, need $deposit = $278
•New, practical Ethereum implementation not in
paper
•We’re implementing it…

www.thehydra.io

Initiative for CryptoCurrencies and Contracts (IC3)

www.initc3.org

